

The cost of power outages to Zambia's manufacturing firms, households and the climate

Imad Ahmed PhD Researcher, UCL | Senior Economist, Vivid Economics imad.ahmed@vivideconomics.com Grid Reliability & Operations Conference, Accra, 4/2/2020

Acknowledgements

Supervisor: Professor D'Maris Coffman, UCL
Field Research Manager: Graham Sianjase
Enumerators: Beauty Nkosha, Johanna Mwila, Mundia Kayamba, Nandi Ngwenye, Tapiwa Janda
Field Research Funder: International Growth Centre
Studentship & scholarship: University College London

The study

National electricity consumption by economic sector, 2014-2018

	ectors 2014		2015		2016		2017		2018		
		GWh	% share								
^	Mining	5,871	47.3%	6,246	54.5%	5,918	54.5%	6,202	50.9%	6,682	54.8%
	Domestic	3,251	26.2%	3,482	30.4%	3,383	31.2%	4,147	34.0%	4,337	35.6%
	Finance & property	487	3.9%	517	4.5%	499	4.6%	640	5.2%	714	5.9%
	Manufacturing	479	3.9%	531	4.6%	470	4.3%	503	4.1%	593	4.9%
	Agriculture	241	1.9%	260	2.3%	228	2.1%	262	2.1%	297	2.4%
	Others	99	0.8%	99	0.9%	80	0.7%	87	0.7%	84	0.7%
	Trade	107	0.9%	110	1.0%	97	0.9%	110	0.9%	114	0.9%
	Energy & water	73	0.6%	89	0.8%	88	0.8%	81	0.7%	69	0.6%
	Quarries	62	0.5%	68	0.6%	60	0.5%	118	1.0%	148	1.2%
	Transport	31	0.3%	33	0.3%	28	0.3%	32	0.3%	33	0.3%
	Construction	1,702	13.7%	15	0.1%	7	0.1%	10	0.1%	11	0.1%
	Total	12,405	100%	11,450	100%	10,857	100%	12,192	100%	13,080	107%

The study

Manufacturing survey

Survey of 123 large manufacturing firms funded by the **International Growth Centre**

- Stratified by subsector success
- Geography: Lusaka, Ndola, Kitwe (primary industrial towns)
- April-August 2018

Survey of individuals

Survey of 54 distinct IP addresses

- Restricted to internet users (online)
- Geography: 80% from Lusaka province; 6 of 10 provinces represented
- December 2019 before the announcement of a tariff hike

Issues of interest – manufacturing

- 1. Months and years firms experienced their worst power outages
- 2. Whether firms experienced unplanned and planned outages differently
- 3. Extent of costs incurred as a result of outages
- 4. Firms' coping strategies
- 5. Correlations between firm characteristics, costs of power outages, coping mechanisms
- 6. Willingness to pay a premium on the latest tariff revisions for more reliable electricity after the latest tariff revisions of 1 September 2017
- 7. Energy use patterns
- 8. Carbon emissions associated with diesel generation

Issues of interest – individuals

- 1. Years firms experienced their worst power outages
- 2. Impact of outages
- 3. Coping strategies
- 4. Willingness to pay for reliable energy
- 5. Ubiquity of diesel generation as an intervention

Findings

Periods of worst outages

Years of worst outages & of oldest generators

Worst months for power outages

44

Rank of the costs of outages – firms

Most common & severe cost of power outages (0-4)

衞

Rank of the costs of outages - individuals

Most popularly scored costs of power outages (0-4)

44

Coping mechanisms – firms

Most popular interventions (0-4)

Coping mechanisms – individuals

Most popular interventions (0-4)

衞

Efficacy of coping mechanisms

- Self-generation contributed to reduced delays*** which resulted in reduced loss in clients***
 - 73% of firms had generators; 93% firms used them
 - Predictors of installed capacity (45% R-sq):
 - Firm size in terms of employees (+)***
 - Production hours per week (+)*
 - Predictors of generator use (prob > chi sq = 2%):
 - Exports* (+)
 - Basic metals subsector** (-)
 - Wood subsector** (-)
 - Installed capacity*** (+)

Marginal cost of using backup generators

Assumptions:

13 K/USD as of 31 August, 2018

0.29 USD/kWh variable cost of self-generation

Marginal cost of power outages - differential between self-generation and Zesco tariff in 2018								
	% of respondents who fall into this category	Marginal cost, USD/kWh	% different from standard 16-300kVA					
Maximum demand capacity 16-300kVA	50%							
Standard charge, 6am-6pm		0.263	0%					
Off-peak charge, 10pm-6am		0.270	3%					
Peak charge, 6-10pm		0.256	-3%					
Maximum demand capacity 301-2000kVA	37%							
Standard charge, 6am-6pm		0.267	1%					
Off-peak charge, 10pm-6am		0.272	4%					
Peak charge, 6-10pm		0.262	-1%					
Maximum demand capacity 2001-7,500kVA	13%							
Standard charge, 6am-6pm		0.271	3%					
Off-peak charge, 10pm-6am		0.276	5%					
Peak charge, 6-10pm		0.267	1%					
Maximum demand capacity 7,500+kVA	0%							
Standard charge, 6am-6pm		0.274	4%					
Off-peak charge, 10pm-6am		0.278	6%					
Peak charge, 6-10pm		0.271	3%					

WTP for more reliable electricity - firms

- 25% respondents (2018) said they WOULD be WTP more
 - Likelihood of a firm that exports being willing to pay more was 80%***
 - Food & beverages* (+)
- Those who refused:
 - 1. 7% satisfied
 - 2. 13% thought their tariffs were already too high
 - 3. 2% because there had already been two tariff hikes in 2017
 - 4. Distrust in ZESCO's ability to deliver 26% respondents:
 - never received notifications of outages or
 - received inaccurate notifications
 - 5. Firms perceived that they were subsidising mining companies

Tariffs too low to impact consumption

Peak energy consumption for by 33 MD1, 2 & 3 firms pre & post tariff hikes

WTP for more reliable electricity - individuals

- 63% said they would be willing to pay more
- On average: K 1.4/kWh (USD 0.095/kWh)
 - In contrast to
 - what they were paying:
 - K 0.15/kWh for the first 200kWh/month and
 - K 0.89/kWh for more
 - what they started paying from 1 Jan, 2020:
 - K 0.47/kWh for the first 100kWh/month and
 - K 0.85/kWh for the next 200kWh/month and
 - K 1.94/kWh for more

Predictors of WTP more

(42% R-sq; p > F = 0.02):

- Income (+) ***
- Spoilage of food (+)**
- Cooking limited (+)**

WTP for more reliable electricity - individuals

15. Households currently pay K 0.15/kWh for the first 200kWh/month and K 0.89/kWh on energy consumed after the first 200kWh/month.

Zesco is not charging any customer a cost-recovery tariff, which means it does not have the money to supply more energy.

Bearing in mind that it costs about K 4.2/kWh to run a diesel-generator, if it meant more reliable energy, what is the maximum you would pay:

- K 1.2/kWh on all your household energy consumption?
- K 1.5/kWh on all your household energy consumption?
- K 1.7/kWh on all your household energy consumption?
- Other, K/kWh (state how much in comments)

Comments:

Sacrifices for higher tariffs:

- Use geysers less
- Switch to gas stoves
- Energy saving lights
- Use water boiler less; have people shower within 2 hour periods in the morning & evening

Energy use patterns

- Firms operating >84h/week operated less during offpeak hours; more during peak hours than if they had been operating steadily 24h/day
 - The c. \$0.01/kWh difference between peak and off-peak tariffs (compared with Zimbabwe's \$0.09/kWh) is not enough to induce alignment of firms' energy use with ZESCO's baseload versus peak-load levelised costs of energy

Carbon emissions from self-generation

- Generator usage collected data
 - Fuel used, generator capacity, hours run, MJ released
- Predictors of fuel use & hence emissions 99.9% R-sq:
 - Year (2015 or 2016)*
 - Installed capacity, kVA**
 - Installed capacity, litres*
- \Rightarrow Extrapolated 13,000 tonnes CO₂ for worst month in 2015/16
- →3,400 tonnes in 2017/2018

Carbon emissions from self-generation

Income a statistically significant predictor for ownership & extent to which used

- Possibly north of 200,000 hh use diesel generators*
- Not immediately switched on wait until sunset, or 2-20 hours
- Not used for prolonged periods up to 4-8 hours

Imad Ahmed imad.ahmed@vivideconomics.com https://www.ucl.ac.uk/bartlett/construction/people/phd-students/imad-ahmed